Second Order Field Dependent Lagrangian & It's Effect on Higgs Field
Zoalnoon Ahmed Abeid Allah
Sudan University of Science & Technology, College of Graduate studies

ARTICLE INFO
Article history:
Received: 2 June 2015;
Received in revised form: 24 March 2016;
Accepted: 29 March 2016;

Keywords
Lagrangian, Higgs field, Poison equation.

ABSTRACT
The Einstein generalized general relativity Lagrangian dependent on the second derivatives of the field, when use together with poison equation causes the mass term in the Lagrangian disappear. This means that Higgs field which was proposed to generate mass need to be revised. The work also aimed to see how Einstein generalized general relativity Lagrangian can affect Higgs field.

Introduction
The ordinary Lagrangian is dependent on coordinate variables, beside generalized coordinates and their first derivatives unfortunately this Lagrangian is found to be unable to describe the generalized Einstein generalized general relativity (EGGR) without adding to it a second derivative in the generalized coordinate.

This chapter is devoted to extend this notion to describe the general fields besides investigating its direct impact on Higgs field and its role in generating mass.

Second order field dependent Lagrangian
The Lagrangian of (EGGR) is in the form:
\[L = L(x, \phi, \partial \mu \phi) \]

The second term in the Lagrangian is given by:
\[m_{\phi \phi} \rho \]

According to poison equation:
\[\Phi = -\partial \mu \mu \rho \]

Thus the mass term in L can be replaced by (5.2.6) to get:
\[L = L = i\gamma_\mu \partial \mu \Psi + C_0 \partial \mu \phi - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} \]

C_0 = 1/C_1

It is clear that the mass term which prevents invariance disappear. According to equation (5.2.3) the mass term appears to be:
\[\delta L = i\gamma_\mu \partial \mu \Psi + C_0 \partial \mu \phi \]

Thus the need to Higgs fields variables to generate mass need to be revised.

Conclusion
The new EGGR Lagrangian which depends on the second derivative of the field variables causes mass term to disappear in the Lagrangian.

Thus the non invariance of the mass term which motivates Higgs to propose his field needs to be revised to search for new mechanism to generate mass.

References
[4] Higgs searches at LHC, Giorgia Mila on behalf of the ATLAS and CMS collaboration, Department of Physics, University of Torino, ITALY
[8] Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC. The ATLAS Collaboration.
[14] The ATLAS Collaboration. Update of the combination of higgs boson searches in 1.0 to 2.3 fb$^{-1}$ of pp Collisions Data Taken at $s = 7$ TeV with the Atlas experiment at the LHC.